

Circuit Diagrams

MK 7850N. 82/200

$$
A_{12}^{\mathrm{t}}
$$

MK 7850N.82/500

Your Advantages

- Up to 10 functions in one unit
- Simplified storage
- Increased flexibility
- Quick setting of long time values

Features

- According to IEC/EN 61 812-1
- 8 functions settable via rotational switch:
- Delay on energisation (AV)
- Fleeting on make (EW)
- Delayed pulse (IE)
- Flasher, start with pulse (BI)
- Delay on de-energisation (RV)
- Pulse forming function (IF)
- Fleeting on break (AW)
- Delay on energisation and de-energisation (AV / RV)
- 8 time ranges from 0.02 s to 300 h selectable via rotational switches
- Voltage range AC/DC $12 \ldots 240 \mathrm{~V}$
- With time interruption / time adding input for all functions
- Suitable for 2-wire proximity sensor control
- 2 changeover contacts, one programmable as instantaneous contact
- LED indicators for operation, contact position and time delay
- Wire connection: also $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled, or $2 \times 2.5 \mathrm{~mm}^{2}$ solid DIN 46 228-1/-2/-3/-4
- as option with pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- 22.5 mm width

MK 7850N/500: as MK 7850N/200 but with

- 2 additional functions:
- Cyclic timer, start with break (TP)
- Fleeting on make and break (EW / AW)
- second time setting t_{2} for functions
- Cyclic timer, start with pulse (TI) or break (TP), based on the separate setting of pulse and break time the flasher function can be used as cyclic timer
- Fleeting on make and break (EW/AW)
- Delay on energisation and de-energisation (AV / RV)
- Delay pulse (IE) and setting of pulse length
- Connection facility for 2 external potentiometers

Application

Time dependent controls for industrial and railway applications.

Indicators

green LED:
yellow LED "R/t":
-Continuously off:
-Continuously on:
-Flashing (short on, long off)
-Flashing (long on, short off)
on when voltage connected
shows status of output relay and time delay:
output relay not active;
no time delay
output relay active;
no time delay
output relay not active;
time delay
output relay active;
time delay

MK 7850N/200

(1) ... (8) = position of function switch
(1) AV $=$ Delay on energisation
(2) EW $=$ Fleeting on make
(3) $\mathrm{IE}=$ Delayed pulse
(4) $\mathrm{BI}=$ Flasher, start with pulse
(5) RV = Delay on de-energisation
(6) IF $=$ Pulse forming function
(7) AW = Fleeting on break
(8) AV/RV $=$ Delay on energisation and de-energisation

*) A and B indicate the position of function slide switch S1

MK 7850N/500

(1)... (8) $=$ position of function switch

Connection Terminals	
Terminal designation	Signal designation
A1, A2	Auxiliary voltage
B1(+), A2	Control input (various control possible, depending on the time function)
X1, X2	Control input (2. delayed C/O contact or instantaneous contact) X1/X2 not bridged: $2^{\text {nd }}$ delayed C/O contact 25-26-28 X1/X2 bridged: $2^{\text {nd }}$ instantaneous C / O contact 21-22-24
X3, X2	Control input (Time interruption/time adding) X3/X2 bridged: Time interruption X3/X2 not bridged: continued time delay (with time adding)
Z1, Z2	Input for connection of a external potentiometer for time setting t1
Z3, Z2	Input for connection of a external potentiometer for time setting t2
15, 16, 18	$1{ }^{\text {st }} \mathrm{C} / \mathrm{O}$ contact (delayed)
21, 22, 24, 25, 26, 28	$2^{\text {nd }} \mathrm{C} / \mathrm{O}$ contact (delayed), if X1/X2 not bridged $2^{\text {nd }} \mathrm{C} / \mathrm{O}$ contact (instantaneous), if X1/X2 bridged

Notes

Control of A1-A2 with proximity sensors

The input can be controlled by DC 3 wire or AC/DC 2 wire proximity sensors. For operating voltage $>24 \mathrm{~V}$ and usage of sensors without built-in short circuit protection a protection resistor on A 1 is recommendend to reduce the inrush current. The dimension is as follows:
$R_{v} \approx$ operating voltage / max. switching current of sensor
The series resistor must not be selected higher than necessary. Max. values are:

Operating voltage:	48 V	60 V	110 V	230 V	
Series resistor $\mathrm{R}_{\mathrm{v}} \max :$	270Ω	390Ω	680Ω	$1.8 \mathrm{k} \Omega$	$(1 \mathrm{~W})$

Instantaneous contact

By external wire links the output function of the device can be altered from 2 delayed contacts to 1 delayed and 1 instantaneous contact. The contact $25-26-28$ is delayed without bridge on $\mathrm{X} 1-\mathrm{X} 2$, it is instantaneous with bridge on X1-X2. The legend term is 21-22-24. The instantaneous contact switches when the operating voltage is connected. To terminals X1 and X2 no other voltage potentials must be connected, as the unit might be damaged.

Adjustment assistance

The flashing period of the yellow LED is $1 \mathrm{~s} \pm 4 \%$ and can be used to adjust the time. Especially on the lower end of scale and for long times it is suitable as the multiplication factors between the different time ranges are exact without tolerance.
Example:
The required time is 40 min . It has to be adjusted within range $3 \ldots 300 \mathrm{~min}$. The time check takes too long as several timing cycles would be necessary for a precise value. For faster adjustment the setting is made to $0.03 \ldots 3 \mathrm{~min}$. On this range the potentiometer should be set to 0.4 min (= 24 sec .). With the right potentiometer setting the LED must show 24 flashing cycles. After that the time range is switched over to $3 \ldots 300 \mathrm{~min}$. and the setting is complete.

Time interruption / time adding with B1

With the functions AV, EW, IE and BI the time delay can be interrupted by controlling input B1 (+) with control voltage. Removing the control signal will continue the timing cycle (time addition).

Notes

Control input B1

The functions RV, IF, AW, AV / RV have to be controlled via input B1 (+) with voltage against A2. The control signal could be the same as the auxiliary/control voltage of A1 or any other voltage between 12 and 240 V AC or DC. Operating a parallel load between B 1 and A 2 is also possible.

If with function IF the inputs A1 and B1 are controlled simultaneously a pulse with the adjusted length is started. With the variant MK 7850N/500 the output pulse can be disabled by setting the slide switch in Position "B".

Time interruption and time addition with X3

On all functions, also with RV,IF, AW (EW/AW) and AB/RV the time delay can be interrupted during timing by bridging the terminals X2 - X3. By opening the bridge the time continues (time addition). While X2 and X3 are bridged the control input is disabled and the yellow LED remains in the state it had at stop. No external voltage must be connected to X2 and X3 as the unit may be damaged.

Remote potentiometers

Both settings on variant MK 7850N/500 can also be made by remote potentiometers of 10 kOhms :

- terminals Z1-Z2: potentiometer for time t1
- terminals Z2-Z3: potentiometer for time t2

When connecting a remote potentiometer the corresponding potentiometer has to be set to min. If no remote potentiometers are required the terminals Z1-Z2 resp. Z2-Z3 have to be linked.
The wires to the remote potentiometers should be installed separately from the lines with mains voltage. If this is not possible, a screened cable is recommendet where the shield is connected to Z 2 .
To terminals $\mathbf{Z 1}, \mathbf{Z 2}$ and Z 3 no external voltage must be connected, as the unit might be damaged.

Additional function

With the variant MK 7850N/500 additional features can be selected for the functions position 3, 4 and 7 using the slide switch S1 on the relay front in position " B ". At the same time a second time setting t 2 is available on the lower potentiometer (see Function Diagram) the time range is the same as for t1.

Attention

If no remote potentiometers at $\mathrm{MK} 7850 \mathrm{~N} / 500$ are required the terminals Z1-Z2 resp. Z2-Z3 have to be linked.

Technical Data

Time circuit

Time ranges:

Time setting t1, t2:
Recovery time:
at DC 24 V :
at DC 240 V :
at AC 230 V :
Repeat accuracy:

Voltage and temperature influence:
nput

Nominal voltage U_{N} :
Voltage range:
Release voltage (A1/A2)
AC 50 Hz :
DC:

AC 50 Hz :
DC:
Max. permitted residual current with 2-wire proximity sensor control (A1-A2)
up to AC/DC 150 V:
up to AC/DC 264 V:
Control current B1:
range
Min. on/off time of
control input B1(+):
AC 50 Hz :
DC:
Release voltage (B1/A2)
AC 50 Hz :
DC
Nominal power consumption
AC 12 V :
AC 24 V :
AC 240 V :
DC 12 V :
DC 24 V :
DC 240 V :
Nominal frequency:
Output

Contacts

MK 7850N. 82 :
without bridge $\mathrm{X} 1-\mathrm{X} 2$:
with bridge $\mathrm{X} 1-\mathrm{X} 2$:
Contact material:
Measured nominal voltage:
Thermal current $I_{\text {th }}$:
Switching capacity
to AC 15
NO contact:
NC contact:
to DC 13 at 0.1 Hz :

Electrical life

to AC 15 at 1 A, AC 230 V:
Permissible switching
frequency:
Short circuit strength max. fuse rating:
Mechanical life:

8 time ranges in one unit, settable via rotational switch
$0.02 \ldots 1$ s $0.3 \ldots 30 \mathrm{~min}$ 0.06 ... 6 s 3 ... 300 min $0.3 \ldots 30$ s $\quad 0.3 \ldots 30 \mathrm{~h}$ 0.03 ... 3 min 3 ... 300 h
continuous, 1:100 on relative scale (t2 only at MK 7850N/500)
approx. 15 ms
approx. 50 ms
approx. 80 ms
$\pm 0.5 \%$ of selected
end of scale value +20 ms
$<1 \%$ with the complete
operating range

AC/DC 12 ... 240 V
$0.8 \ldots 1.1 U_{N}$
Delayed contact
approx. 7.5 V
approx. 7 V
Instantaneous contact
approx. 3 V
approx. 3.3 V

AC resp. DC 5 mA
AC resp. DC 3 mA
approx. 1 mA , over complete voltage
approx. 15 ms / approx. 60 ms approx. $5 \mathrm{~ms} /$ approx. 60 ms
approx. 3.5 V
approx. 3 V
approx. 1.5 VA
approx. 2 VA
approx. 3 VA
approx. 1 W
approx. 1 W
approx. 1 W
$45 \ldots 400 \mathrm{~Hz}$

2 changeover contacts, one programmable as instantaneous contact:
25-26-28 delayed changeover contact
21-22-24 instantaneous contact at
U_{N} on A1-A2
AgNi
AC 250 V
see quadratic total current limit curve (max. 4 A per contact)

3 A / AC 230 V IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
1 A / DC 24 V
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
1.5×10^{5} switching cycles
36000 switching cycles / h

Technical Data

General Data

Operating mode:
Temperature range
Operation:

Storage:
Relative air humidity:
Altitude:
Clearance and creepage
distances
rated impulse voltage /
pollution degree:
Overvoltage category:
Insulation test voltage, type test:
EMC
Electrostatic discharge:
HF-irradiation
80 MHz ... 1 GHz :
$1 \mathrm{GHz} \ldots 2.7 \mathrm{GHz}$:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:

Vibration resistance:

Climate resistance:
Terminal designation:
Wire connection
Screw terminals
(integrated):

Insulation of wires
or sleeve length:
Plug in with screw terminals
max. cross section
for connection:
Insulation of wires
or sleeve length:
Plug in with cage
clamp terminals max. cross section for connection:
min. cross section
for connection:
Insulation of wires
or sleeve length:
Wire fixing:

Wire fixing:
Fixing torque:
Mounting:
Weight:

Dimensions

Width x heigth x depth

MK 7850N/200:
MK 7850N/200 PC:
MK 7850N/200 PS:

Continuous operation
$-40 \ldots+60^{\circ} \mathrm{C}$
(higher temperature see
quadratic total current limit curve)
$-40 \ldots+70^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
<2.000 m

4 kV / 2 (basis insulation) IEC 60 664-1 III
2.5 kV; 1 min

8 kV (air)
IEC/EN 61 000-4-2
$20 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
2 kV
IEC/EN 61 000-4-4

2 kV
4 kV
IEC/EN 61 000-4-5

10 V
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
Limit value class B
EN 55011
IP 40
IEC/EN 60529
IP 20
IEC/EN 60529
Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm ,
frequency $10 \ldots 55 \mathrm{~Hz}$, IEC/EN 60 068-2-6
40 / 060 / 04 IEC/EN 60 068-1
EN 50005
DIN 46 228-1/-2/-3/-4
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled or
$2 \times 2.5 \mathrm{~mm}^{2}$ solid
8 mm
$1 \times 2.5 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled

8 mm
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled
$0.5 \mathrm{~mm}^{2}$
$12 \pm 0.5 \mathrm{~mm}$
Plus-minus terminal screws M 3.5 box terminals with wire protection or cage clamp terminals
Box terminals with wire protection
0.8 Nm

DIN rail
IEC/EN 60715
approx. 150 g
$22.5 \times 90 \times 97 \mathrm{~mm}$
$22.5 \times 111 \times 97 \mathrm{~mm}$
$22.5 \times 104 \times 97 \mathrm{~mm}$

Classification to DIN EN 50155

Vibration and

shock resistance: Category 1, Class B IEC/EN 61373
Ambient temperature:
T1, T2 compliant
T3 and TX with operational limitations
Protective coating of the PCB: No

UL-Data

Switching capacity:

Ambient temperature $60^{\circ} \mathrm{C}$:
Pilot duty B300
5A 250Vac G.P.
$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only
Wire connection:
Screw terminals fixed:
Plug in screw:
Plug in cage clamp:

AWG 20-14 Sol Torque 0.8 Nm
AWG 20-16 Str Torque 0.8 Nm
AWG 20-12 Sol/Str

Technical data that is not stated in the UL-Data, can be found in the technical data section.

CCC-Data

Switching capacity:

to AC 15
NO contact:
1.5 A / AC 230 V

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Types

MK 7850N.82/200/61	... 240 V
Article number:	0056618
- Output:	2 changeover contacts, one programmable as instantaneous contact
- Nominal voltage U_{N} :	AC/DC $12 . . .240 \mathrm{~V}$
- Time ranges:	from 0.02 s ... 300 h
- Width:	22.5 mm

Variants

MK 7850N.82/300: 8 functions with connection facility for 1 remote potentiometer $10 \mathrm{k} \Omega$ (t1).
MK 7850N.82/500: second time setting t2, connection facility for 2 remote potentiometers $10 \mathrm{k} \Omega$ to adjust t1 and t2,
2 additional functions selectable via slide switch S1:

- Cyclic timer, start with break (TP)
- Fleeting on make and break (EW/AW)

Ordering example for variants

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

Cage clamp (PC/plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Characteristic

Accessories

AD 3:

Degree of protection

front side:

$$
\text { IP } 60
$$

Connection Examples

Control with parallel connected load

Connection with 2 different control voltages.

